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I. INTRODUCTION

Thin shells are slender, flexible structures characterized by
a high width-to-thickness ratio (greater than 100). They are
ubiquitous in both natural and engineered systems, from the
delicate curvature of leaves to the structural components of
vehicles and architecture. Unlike flat plates or fully volumetric
solids, the mechanical behavior of thin shells is dominated by
their intrinsic curvature, making accurate simulation particu-
larly challenging and computationally demanding.

In this project, we develop a finite element method (FEM)-
based solver implemented with taichi for simulating the elastic
deformation of thin shells, centered around the Discrete Shells
framework introduced by [1]].

II. RELATED WORKS
A. Large timesteps in cloth simulation

The work [2] introduced a foundational approach for simu-
lating cloth that remains influential in the field. By formulating
the cloth dynamics as a system of differential equations and
solving them implicitly, they achieved stability even under
large timesteps.

B. Discrete Shells

The Discrete Shells model by [Grinspun et al. 2003].
provides a geometrically intuitive and computationally effi-
cient framework for simulating thin shells. It discretizes the
shell surface as a triangle mesh and models the mechanical
behavior using discrete analogues of bending and membrane
energies. Discrete Shells excels at preserving isometry during
deformation and is particularly well-suited for thin, highly
flexible materials where thickness is negligible.

III. METHOD
A. The Energy Model of Discrete Shells
a) Membrane Energy:
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b) Bending Energy:
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where 6, and 6, are the corresponding complements of
the dihedral angle of edge e measured in the deformed and
undeformed configuration respectively, and h.. is a third of the
average of the heights of the two triangle incidents to the edge.
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c) dynamic system: Then, the system needed to be solved
will be
of
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We use the modified Conjugate Gradient Method to solve
the system.
d) Collision: For most of the model, we use a collision
model porposed by
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with n the contact norm
e) pipeline: We use taichi for the whole implementation.
We do not use the autodiff of taichi as taichi does not provide
auto hessian, and we need preliminary information on the
gradient for the hessian.
The whole pipeline is in Algorithm 1.

Algorithm 1 Shell Solver

x ¢ 2t

Detect collisions and generate penalty constraints.
Compute C'(x), internal forces f; and damping d;
Assemble global system (forces f, stiffness K;;)
Add boundary and collision constraints

Solve linear system using modified-PCG

Update positions: x!*! < x! + Ax

Update velocities: vi+! «+ (x!+1 — x') /At
return x'*!
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IV. RESULTS

A. Demonstation of the cloth solver

We simulate a piece of cloth undergoing free fall onto a
sphere, with one edge constrained. The results are shown in
Figure and

After testing the cloth solver, we replaced the membrane and
bending models with those proposed in the Discrete Shells
formulation. The updated simulation results are presented
below.

B. Beam with Different Stiffness

We replicate the experiment described in the original article
to evaluate the deformation behavior of a beam under varying
stiffness values. Our results, shown as Fig [2| are qualitatively
consistent with those reported in the article.



f

(a) Free falling cloth onto a (b) Constrained cloth falling

ball onto a ball
Fig. 1: Demonstration of the cloth solver
(a) ks =10.0 (b) kg =1.0 (©) kg =0.1

Fig. 2: beam with different stiffness

(a) Kbending =4 (b) Kbending =04

=

(d) Kbending = 0.004

(C) Kbcnding =0.04
Fig. 3: Falling bunnies with different bending stiffnesss

C. Falling Bunny

Next, we simulate a more complex scenario: the free fall and
subsequent bouncing of the Stanford Bunny. The simulation
results under different stiffness values are shown in Figure [3]

However, as we increased the number of vertices in the
Stanford Bunny, the simulation became unstable and eventu-
ally exploded during the free fall phase. Upon investigation,
we identified the cause to be numerical instability in the
arccos function. To address this issue, we switched from
single-precision (fp32) to double-precision (fp64) floating-
point arithmetic, which successfully resolved the problem.

D. Bouncing Bunny

Then, we attempt to adopt the Incremental Potential Con-
tact (IPC) [3lframework to simulate the bouncing behavior
between two Stanford Bunnies — a more challenging and
contact-dense scenario. IPC is particularly appealing for our
case because it enables robust, intersection-free collision han-
dling through a carefully designed barrier energy formulation.

To achieve this, we use the following collision energy
model:

S o d R
b(d,J):{ (d - d) ln(d), 0<d<d
0, d>d

where d is the current distance between two potentially col-
liding primitives (e.g., vertex-face or edge-edge), and d is the
activation distance threshold.

We perform a line search over both the time step At and
the contact stiffness parameter «, in order to find values that
minimize the total potential energy while ensuring that no
intersections occur during the simulation.

E. Comparison with Abaqus

To test the accuracy of our FEM solver, we constructed
a model of a lidless can, subjected it to compression in our
simulator, and compared the results with those obtained from
a more advanced FEM tool—Abaqus, which is shown in [4]

For convenience, we applied a force constraint in the
Abaqus simulations instead of a velocity constraint. Although
our simulation contains some unrealistic aspects, we observed
the same cyclic indentation along the edge, which validates
the key deformation behavior and supports the credibility of
our solver. |I|

(a) ours

(b) Abaqus

Fig. 4: Comparison between ours & Abaqus

V. CONCLUSIONS

We developed a shell solver using Taichi based on the
Discrete Shells formulation. To validate the correctness of our
implementation, we conducted a series of experiments and
compared the performance of different numerical methods.
Our results demonstrate that using double-precision floating-
point arithmetic becomes crucial as the number of vertices
increases, due to accumulated numerical errors.

Future improvements include supporting a wider variety of
materials and incorporating techniques from recent research to
enhance both the accuracy and performance of the solver and
also incorporation of IPC.

IThe reulte of abaqus simulation is borrowed from |https://www.youtube.
com/watch?v=29XRT5USQxoé&themeRefresh=1
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